What is Nonlinear Dynamics? HRV 2006: Techniques, Applications, and New Directions

Daniel Kaplan Macalester College Saint Paul, Minnesota

Dynamics and Complexity

- Historically
 - Simple systems generate simple behavior
 - e.g. the pendulum
 - orbits of planets in the solar system
 - Complex systems generate complex behavior
 - e.g. the economy
 - In between is in between
 - e.g., NMR spectroscopy

Dynamics since the 1970s

- Simple systems can generate complex-looking behavior.
 - Chaos
 - Planets are not so simple after all, asteroids
- Complex systems can generate simple behavior
 - Fixed points, limit cycles
- New types of behavior can emerge when coupling systems
 - Spiral waves in tachycardia and fibrillation.

Components of Dynamics

- A state that can change in time.
 - a sufficient description of the system
- A rule/mechanism/process that describes what the new state will be given any existing state.
 - Discrete time: finite-difference equations
 - Continuous time: differential equations
- Possibly a set of inputs that connect the system to another one: coupling
 - The inputs might be considered random, giving a stochastic dynamical system.

A One-dimensional State

From Clocks to Chaos

The Rhythms of Life

Leon Glass and Michael C. Mackey Princeton Univ. Press 1988 0-691-08496-3

A Two-dimensional State

What is Linear Dynamics?

- The dynamical rule is a proportional function of the state.
- Basic phenomena
 - Exponential growth, exponential decay
 - Sine-wave oscillation
 - Modulated sine-wave oscillation
 - Combinations of the above
- Stability: decays to steady state or grows to infinity. There's no in-between behavior

Linear Dynamics with an Input

- Proportional response: doubling the input leads to doubling the output.
- Sine-wave input gives a sine-wave output.
 - Respiration and RSA in HRV
- Superposition and decomposition:
 - OBreak input into components, find response to each component, then add together to find the overall response.
 - Fourier decomposition.

Ways that Linear Models are Wrong for HRV

- Proportional response?
 - Limits to ventricular response to pacing. If the response were proportional, the heart rate would be unlimited. [See Leon Glass's session on complex arrhythmogenesis.]

Phenomena Linear Models Can't Capture

- Stability and a Single point attractor?
 - The same cardiac system can have utterly different types of sustained behavior depending on the initial state, e.g. NSR, tachycardia, fibrillation.
- Entrainment
- Frequency Pulling

Nonlinear Interactions of HRV Oscillators: Model w/strong 10 second rhythm

"All models are wrong, some models are useful." –George Box

- In some situations, linear models might be more useful than nonlinear ones.
- State might be so complicated that we can't construct any detailed proxy for it, so the dynamics are effectively random.
- Outside inputs may dominate internal dynamics.
 - e.g. random-interval breathing
- Nonstationarity
 - is there enough repetition to see the dynamical rule?
 - is the state changing according to a constant dynamical rule or is the rule changing in time?
- Parsimony. Linear models can capture behavior with few parameters. Short data sets, changing dynamics limit our ability to see nonlinearity.

Can We Reject Linear Dynamics? The Surrogate Data Technique

- Surrogate data are random data that are consistent with a linear model that matches the data.
 - Generated with fourier synthesis.
- Can you distinguish between the surrogate data and the actual data?
- Surrogate data can be made stationary, by design.

Surrogates as a Sanity Check

Acth rhythms: Chaos or circadian?

HR/Respiration Coupling

One-dimensional, nonlinear determinism characterizes heart rate pattern during paced respiration

KATRIN SUDER,1 FRIEDHELM R. DREPPER,1.2 MICHAEL SCHIEK,1.2 AND HANS-HENNING ABEL3

¹Institut für Biologische Informationsverarbeitung and ²Zentrallabor für Elektronik. Forschungszentrum Jülich, 52425 Jülich; and ³Abteilung Kardioanästhesie, Städtisches Klinikum, 38302 Braunschweig, Germany

HR/Resp Coupling (cont)

Tr

12

900

max

14441

Fig. 3. Graphic explanation of embedding of rotation angles. R-R intervals $L_1, ..., L_{12}$ occurring during 1 respiratory cycle Tr (A) are embedded twodimensionally, leading to 12 pairs of successive R-R intervals (L_1,L_2) , ..., (L₁₂,L₁₃) (B). Rotation angles (Φ) are defined around a center point (LL). Maximal heartbeats are close to Φ = 1/4, and minimal heartbeats are close to $\Phi = 5/4$. To get a continuous graph of the circle map (C), we shifted all ordinates (angles at time n+1) larger than 1.5 by -2.0. Because of the periodicity of angles Φ , this does not change the dynamics, but it eases visual analysis of all circle mans.

HR/Resp Coupling w/Surrogates

Shuffled Surrogates

Phase Surrogates

The Spectrogram

Some Approaches to Nonlinear Dynamics

Constructing a proxy state: lag embedding

Example: signal

becomes a sequence of vectors

Model Construction

- Embed time series
- Infer dynamical rule from present->future state-transition pairs
 - Many model architectures possible:
- Nonlinear Prediction
 - OHow well does the model predict the time series itself?

Squid Return Maps

Entropy and Dimension

- Treat the trajectory as a probability cloud.
- Quantify the information content of the probability.
- Treat the trajectory as an object
- Quantify the shape, e.g., scaling properties.

The State Need Not be Numerical: Symbolic Dynamics

- Can assign a "letter" to each measurement, e.g. U, S, D depending on whether the IBI went "up", "down" or "steady."
- Embedding amounts to looking at the "words" of consecutive letters in the signal.
- Concepts of information and state transition still apply.

Conclusion

- Simple systems
 - simple behavior
 - complex-looking behavior
- Complex systems
 - simple behavior
 - complex-looking behavior
 - complex behavior

We're now pretty good at extracting information from simple signals via linear analysis and complex-looking signals via nonlinear analysis.

But we're not yet so good at dealing with genuinely complex signals.

Is HRV complex-looking or just complex?

Holger Kantz and Thomas Schreiber

From Clocks to Chaos

The Rhythms of Life

Leon Glass and Michael C. Mackey Princeton Univ. Press 1988 0-691-08496-3

Spring-Verlag NY ISBN 0-387-94440-0